Automatic brain tumor segmentation by subject specific modification of atlas priors.
نویسندگان
چکیده
RATIONALE AND OBJECTIVES Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. An automated system has been developed for brain tumor segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments white matter, grey matter, cerebrospinal fluid, and edema. The segmentation of pathology and healthy structures is crucial for surgical planning and intervention. MATERIALS AND METHODS The method performs the segmentation of a registered set of magnetic resonance images using an expectation-maximization scheme. The segmentation is guided by a spatial probabilistic atlas that contains expert prior knowledge about brain structures. This atlas is modified with the subject-specific brain tumor prior that is computed based on contrast enhancement. RESULTS Five cases with different types of tumors are selected for evaluation. The results obtained from the automatic segmentation program are compared with results from manual and semi-automated methods. The automated method yields results that have surface distances at roughly 1-4 mm compared with the manual results. CONCLUSION The automated method can be applied to different types of tumors. Although its performance is below that of the semi-automated method, it has the advantage of requiring no user supervision.
منابع مشابه
Medical Image Computing Automatic Brain Tumor Segmentation by Subject Specific Modification of Atlas Priors1
Rationale and Objectives. Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. An automated system has been developed for brain tumor segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments white matter, grey matter, cerebrospinal fluid, and edema. The seg...
متن کاملAutomatic tissue and structural segmentation of neonatal brain MRI using Expectation-Maximization
Accurate automated image segmentation in neonates is challenging due to the lower contrast-to-noise ratio compared to adult scans, the partial volume effect and large anatomical variation. In this paper, we present a technique for brain segmentation into different tissues and structures of interest. Atlas priors and subject-specific tissue priors are used to initialize an ExpectationMaximizatio...
متن کاملSubcortical Structure Segmentation using Probabilistic Atlas Priors
The segmentation of the subcortical structures of the brain is required for many forms of quantitative neuroanatomic analysis. The volumetric and shape parameters of structures such as caudate are employed to characterize a disease or its evolution. This paper presents our fully automatic segmentation of the caudate. The segmentation is based on an unbiased diffeomorphic atlas with probabilisti...
متن کاملA Generative Model for Brain Tumor Segmentation in Multi-Modal Images
We introduce a generative probabilistic model for segmentation of tumors in multi-dimensional images. The model allows for different tumor boundaries in each channel, reflecting difference in tumor appearance across modalities. We augment a probabilistic atlas of healthy tissue priors with a latent atlas of the lesion and derive the estimation algorithm to extract tumor boundaries and the laten...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Academic radiology
دوره 10 12 شماره
صفحات -
تاریخ انتشار 2003